
ICS 104 - Introduction to Programming in Python and C

Decision StructuresDecision Structures

Reading AssignmentReading Assignment
Chapter 3 Sections 1, 2, 3, 4, 7, 8 and 9.

Chapter Learning OutcomesChapter Learning Outcomes
At the end of this chapter, you will be able toAt the end of this chapter, you will be able to

To implement decisions using if statements
To compare integers, �oating-point numbers, and strings
To write statements using Boolean expressions
To validate user input

The if StatementThe if Statement
A computer program often needs to make decisions based on input, or
circumstances.
The **if statement** allows a program to carry out different actions depending on
the nature of the data to be processed.

The **if statement** is used to implement a decision.
The two keywords of the **if statement** are:

if
else

When a condition is ful�lled, one set of statements is executed.
Otherwise, another set of statements is executed.

The if Statement - ExampleThe if Statement - Example
In some countries, the number 13 is considered unlucky.

To avoid offending tenants, buildings owners sometimes skip the 13th
�oor; �oor 12 is immediately followed by �oor 14.
Of course, �oor 13 is not left empty, it is simply called �oor 14.

The computer that controls the building elevators needs to compensate this foible
and adjust all �oor numbers above 13.

The if Statement - ExampleThe if Statement - Example
Let’s simulate this process in Python.

We will ask the user to type in the desired �oor number and then compute
the actual �oor.
When the input is above 13, then we need to decrement the input to
obtain the actual �oor.

The if Statement - ExampleThe if Statement - Example
For example, if the user provides an input of 20, the program determines the actual
�oor as 19.
Otherwise, we simply use the supplied �oor number.

The �gure is called a �owchart.
A �owchart shows the structure of decisions and tasks that are required to solve a
certain problem (usually a complex one).
Flowcharts help the programmer to visualize the �ow of control.

Elements of a FlowchartElements of a Flowchart

The if Statement - ExampleThe if Statement - Example
Sometimes, it happens that there is nothing to do in the else branch of the
statement.

In that case, you can omit it entirely, such as in this example:

The Compound if StatementThe Compound if Statement
Some constructs in Python are compound statements, which span multiple lines
and consist of a header and a statement block.
In Compound statements,

the header requires a colon (:) at the end of it, and
the statement block consisting of a group of one or more statements, is
such that each statement is indented to the same indentation level.

A statement block begins on the line following the header and ends at the �rst
statement indented less than the �rst statement in the block.
Any number of spaces can be used to indent statements within a block, but all
statements within the block must have the same indentation level.
Note that comments are not statements and thus can be indented to any level.

if Statement - Syntaxif Statement - Syntax

In []: ##
This program simulates an elevator panel that skips the 13th floor.

Obtain the floor number from the user as an integer.
floor = int(input("Floor: "))

Adjust floor if necessary.
if floor > 13 :
 actualFloor = floor - 1
else :
 actualFloor = floor

Print the results
print("The elevator will travel to the actual floor", actualFloor)

Student ActivityStudent Activity
In some Asian countries, the number 14 is considered unlucky. Some building
owners play it safe and skip both the thirteenth and the fourteenth �oor. How
would you modify the sample program to handle such a building?

In []: ## Enter your code here.

Relational OperatorsRelational Operators
Every if statement contains a condition.
In many cases, the condition involves comparing two values.

For example, in the previous examples we tested �oor > 13.
The comparison > is called a **relational operator**.

Relational OperatorsRelational Operators

Assignment vs. Equality TestingAssignment vs. Equality Testing
In Python, **=** already has a meaning, namely assignment.
The **==** operator denotes equality testing:

�oor = 13 (**# Assign 13 to �oor**)
if �oor == 13 : (**# Test whether �oor equals 13**)

Comparing StringsComparing Strings
Strings can also be compared using Python’s relational operators.

For example, to test whether two strings are equal, use the **==**
operator.
or to test if they are not equal, use the **!=** operator.

In []: name1 = input("Enter the first name ")
name2 = input("Enter the second name ")
if name1 == name2:
 print("The strings '"+ name1 + "' and '" + name2 + "' are identical.")

In []: name1 = input("Enter the first name ")
name2 = input("Enter the second name ")
if name1 != name2:
 print("The strings '"+ name1 + "' and '" + name2 + "' are not identical.")

When are two strings equal?When are two strings equal?
For two strings to be equal, they must be of the same length and contain the same
sequence of characters:

If even one character is different, the two strings will not be equal:

Student ActivityStudent Activity
In []: print(3 <= 4)

In []: print(3 =< 4)

In []: print(3 > 4)

In []: print(4 < 4)

In []: print(4 <= 4)

In []: print(3!=5-3)

In []: print(3=6/2)

In []: print(1.0 / 3.0 == 0.333333333)

In []: print(3<=4<5)

In []: print("AB" < "AC")

In []: print('AB' == chr(65)+chr(66))

In []: print("10" > 5)

In []: s1 = "This is a long string."
s2 = "This is a l0ng string."
if s1==s2:
 comparison = "identical"
else:
 comparison = "not identical"
print ("The string s1 and s2 are",comparison)

Nested BranchesNested Branches
It is often necessary to include an **if statement** inside another. Such an
arrangement is called a **nested set of statements**.

Nested decisions are required for problems that have multiple levels of
decision making.

Nested Branches (Example)Nested Branches (Example)
In the United States, different tax rates are used depending on the taxpayer’s
marital status. There are different tax schedules for single and for married
taxpayers. Married taxpayers add their income together and pay taxes on the total.

Flowchart of the ExampleFlowchart of the Example

In []: # This program computes income taxes, using a simplified tax schedule.
Initialize constant variables for the tax rates and rate limits.
RATE1 = 0.10
RATE2 = 0.25
RATE1_SINGLE_LIMIT = 32000.0
RATE1_MARRIED_LIMIT = 64000.0
Read income and marital status
income = float(input("Please enter your income: "))
maritalStatus = input("Please enter s for single, m for married: ")
Compute taxes due.
tax1 = 0
tax2 = 0
if maritalStatus == "s" :
 if income <= RATE1_SINGLE_LIMIT :
 tax1 = RATE1 * income
 else :
 tax1 = RATE1 * RATE1_SINGLE_LIMIT
 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT)
else :
 if income <= RATE1_MARRIED_LIMIT :
 tax1 = RATE1 * income
 else :
 tax1 = RATE1 * RATE1_MARRIED_LIMIT
 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT)

totalTax = tax1 + tax2
Print the results.
print("The tax is $%.2f" % totalTax)

Nested Branches - Student ActivityNested Branches - Student Activity
Write a program that reads an integer and prints whether it is negative, zero, or

positive.

Multiple AlternativesMultiple Alternatives
Multiple if statements can be combined to evaluate complex decisions.
For example, consider a program that displays the effect of an earthquake, as
measured by the Richter scale

Multiple AlternativesMultiple Alternatives
You could use multiple **if statements** to implement multiple alternatives, like
this:

In []: richter = 8.0
if richter >= 8.0:
 print("Most structures fall")
else:
 if richter >= 7.0:
 print("Many building destroyed")
 else:
 if richter >= 6.0:
 print("Many buildings considerably damaged, some collapse")
 else:
 if richter >= 4.5:
 print("Damage to poorly constructured buildings")
 else:
 print("No destruction of buildings")

but this becomes dif�cult to read and, as the number of branches increases, the
code begins to shift further and further to the right due to the required indentation.

Multiple AlternativesMultiple Alternatives
Python provides the special construct **elif** for creating **if** statements
containing multiple branches.
Using the **elif** statement, the code segment can be rewritten as:

In []: richter = 8.0
if richter >= 8.0:
 print("Most strcutures fail")
elif richter >= 7.0:
 print("Many buildings destroyed")
elif richter >= 6.0:
 print("Many buildings considerably damaged, some collapse")
elif richter >= 4.5:
 print("Damage to poorly constructed buildings")
else:
 print("No destruction of buildings")

As soon as one of the four tests succeeds, the effect is displayed, and no further
tests are attempted.
If none of the four cases applies, the **�nal else clause** applies, and a default
message is printed.

Multiple AlternativesMultiple Alternatives
Here you must sort the conditions and test against the largest cutoff �rst.
Suppose we reverse the order of tests:

In []: richter = 7.1
if richter >= 4.5: #Tests in worng order
 print("Damage to poorly constrcuted buildings")
elif richter >= 6.0:
 print("Many buildings considerably damaged, some collapse")
elif richter >= 7.0:
 print ("Many buildings destroyed")
elif richter >= 8.0:
 print ("Most structures fail")

The remedy is to test the more speci�c conditions �rst.
Here, the condition **richter >= 8.0** is more speci�c than the condition
richter >= 7.0,
and the condition **richter >= 4.5** is more general (that is, ful�lled by
more values) than either of the �rst two.

Multiple AlternativesMultiple Alternatives
In this example, it is also important that we use an **if/elif** sequence, not just
multiple independent if statements.
Consider this sequence of independent tests.

In []: richter = 7.1
if richter >= 8.0: #Didn't use else
 print("Most structures faill")
if richter >= 7.0:
 print("Many buildings destroyed")
if richter >= 6.0:
 print("Many buildings considerably damaged, some collapse")
if richter >= 4.5:
 print("Damge to poorly constrcuted buildings")

Now the alternatives are no longer exclusive. If **richter** is 7.1, then the last three
tests all match, and three messages are printed.

Multiple AlternativesMultiple Alternatives
In []: # This program prints a description of an earthquake, given the Richter scale

magnitude.
Obtain the user input.
richter = float(input("Enter a magnitude on the Richter scale: "))
Print the description
if richter >= 8.0 :
 print("Most structures fall")
elif richter >= 7.0 :
 print("Many buildings destroyed")
elif richter >= 6.0 :
 print("Many buildings considerably damaged, some collapse")
elif richter >= 4.5 :
 print("Damage to poorly constructed buildings")
else :
 print("No destruction of buildings")

Boolean Variables and OperatorsBoolean Variables and Operators
Sometimes, you need to evaluate a logical condition in one part of a program and
use it elsewhere.
To store a condition that can be true or false, you use a **Boolean variable**.

A boolean variable is also called a �ag because it can be either up (**True**)
or down (**False**).

In Python, the **bool** data type has exactly two values, denoted False and True.

These values are not strings or integers; they are special values, just for **Boolean
variables**.

In []: flag = True
print("The variable flag is of type", type(flag))
if flag :
 print ("A flag is raised")
else :
 print("No flag is raised")

Logical Logical and and and or Operators Operators
Suppose you write a program that processes temperature values, and you want to
test whether a given temperature corresponds to liquid water.

(At sea level, water freezes at 0 degrees Celsius and boils at 100 degrees.)
Water is liquid if the temperature is greater than zero and less than 100:

In []: temp = 10
if temp > 0 and temp < 100:
 print("Liquid")

The condition of the test has two parts, joined by the **and** operator.
Each part is a Boolean value that can be True or False.

The combined expression is True if both individual expressions are True.

If either one of the expressions is False, then the result is also False.

Similarly, we have the **or** operator.
A combined expression with the **or** operator is True if at least one of them is

True.

If both expressions are False, then the result is also False.

Truth Tables for the Logical OperatorsTruth Tables for the Logical Operators

Python utilizes short circuit evaluation when evaluating expressions involving the
logical operators **and** and **or**

If the �rst expression of the **and** evaluates to False, the second

expression is not evaluated.
Similarly for the expressions of the **or** operator. Can you determine
how?

Consider the following example:

In []: value1 = 6
value2 = 10
value3 = 0
if value1 > value2 and value2/value3 > 1 :
 print("This evaluates to True")
else :
 print("This evaluates to False, but at least, it does not crash")

Conditions "Values"Conditions "Values"
A condition in an if statement can be True or False, for example

In []: print(4 < 5)
print(4 >= 5)

A condition in an if statement that has non-zero value is always considered to be

true, although its value is not a Boolean type. As a result, a zero of any type is
considered false.

In []: if 3:
 print('test1')
if 0:
 print('test2')
if 0.0101:
 print('test3')
if 0.000000 :
 print('test4')
if "" :
 print('test5')
if not "" :
 print('test6')

Boolean Variables and Operators - Student ActivityBoolean Variables and Operators - Student Activity
Let us test whether water is not liquid at a given temperature.
That is the case when the temperature is at most 0 or at least 100.

In []:

Student ActivityStudent Activity
In []: # This program demonstrates comparisons of numbers, using Boolean expressions.

x = float(input("Enter a number (such as 3.5 or 4.5): "))
y = float(input("Enter a second number: "))

if x == y :
 print("They are the same.")
else :
 if x > y :
 print("The first number is larger")
 else :
 print("The first number is smaller")

 if -0.01 < x - y and x - y < 0.01 :
 print("The numbers are close together")

 if x > 0 and y > 0 or x < 0 and y < 0 :
 print("The numbers have the same sign")
 else :
 print("The numbers have different signs")

Analyzing StringsAnalyzing Strings
Sometimes it is necessary to determine if a string contains a given substring.

i.e., one string contains an exact match of another string.
for example, given the code segment,

In []: name = "John Wayne"
print("Way" in name)

Python also provides the inverse of the in operator, not in

Operators for Testing SubstringsOperators for Testing Substrings

In []: name = "John Johnson"
print("john" in "John Johnson")

In []: print("ho" not in name)

In []: print(name.count("oh"))

In []: print(name.find("oh"))

In []: print(name.find("ho"))

In []: print(name.startswith("john"))

Methods for Testing String CharacteristicsMethods for Testing String Characteristics

In []: name = "John Johnson"
name.isspace()

In []: name.isalnum()

In []: "1729".isdigit()

In []: "-1729".isdigit()

Input ValidationInput Validation
An important application for the if statement is input validation.
Whenever your program accepts user input, you need to make sure that the user-
supplied values are valid before you use them in your computations

Consider our elevator simulation program.
Assume that the elevator panel has buttons labeled 1 through 20 (but not 13). - The
following are illegal inputs:

The number 13
Zero or a negative number
A number larger than 20
An input that is not a sequence of digits, such as �ve.

Input ValidationInput Validation
In each of these cases, we will want to give an error message and exit the program.
It is simple to guard against an input of 13:

In []: floor = 13
if floor == 13:
 print("Error: There is no thirteen floor.")

Here is how you ensure that the user does not enter a number outside the valid
range:

In []: floor = -1
if floor <=0 or floor > 20:
 print("Error: The floor must be between 1 and 20.")

Input ValidationInput Validation
In []: # This program simulates an elevator panel that skips the 13th floor,

checking for input errors.
Obtain the floor number from the user as an integer.
floor = int(input("Floor: "))

Make sure the user input is valid.
if floor == 13 :
 print("Error: There is no thirteenth floor.")
elif floor <= 0 or floor > 20 :
 print("Error: The floor must be between 1 and 20.")
else :
 # Now we know that the input is valid
 actualFloor = floor
 if floor > 13 :
 actualFloor = floor - 1

 print("The elevator will travel to the actual floor", actualFloor)

Summary: if StatementSummary: if Statement
The if statement allows a program to carry out different actions depending on the
nature of the data to be processed.
Relational operators (< <= > >= == !=) are used to compare numbers and Strings.
Multiple if statements can be combined to evaluate complex decisions.
When using multiple if statements, test general conditions after more speci�c
conditions.

Summary: BooleanSummary: Boolean
The type bool has two values, True and False.

Python has two Boolean operators that combine conditions: and and or.

To invert a condition, use the not operator.

When checking for equality use the ! operator.
The and and or operators are computed lazily:

As soon as the truth value is determined, no further conditions are
evaluated.

